The parabola x2=ay makes an intercept of length √40 on the line y−2x=1, if a is equal to
y=1+2x
x2=ay
x2=a(1+2x)
x2−2ax−a=0
x=2a±√4a2+4a2
x=a±√a2+a
y=1+2x
y=1+2(a±√a2+a)
y=1+2a±2√a2+a
A(a+√a2+a,1+2a+2√a2+a),B(a−√a2+a,1+2a−2√a2+a)
AB=√(2√a2+a)2+(4√a2+a)2
√40=√20(a2+a)
40=20(a2+a)
a2+a−2=0
a=1