The correct option is
B 6π+43 ,
2π−43Let us first find the x-values of the points of intersection using the given equations of parabola y=x22 and circle x2+y2=8 as follows:
x2+y2=8⇒x2+(x22)2=8(∵y=x22)⇒x2+x44=8⇒4x2+x4=32
⇒x4+4x2−32=0⇒x4+8x2−4x2−32=0⇒x2(x2+8)−4(x2+8)=0⇒(x2−4)(x2+8)=0⇒(x2−4)=0,(x2+8)=0⇒x2=4,x2=−8⇒x=±√4⇒x=±2
Let A1 be the area of the region inside the circle and above the parabola and A2 be the area of the region inside the circle and below the parabola. Then we have,
A1=∫2−2(√8−x2−12x2)dx=2∫20(√8−x2−12x2)dx=2[12×8sin−1(2√8)+12×2√8−22−12[13x3]20]=8sin−1(1√2)+2√4−83
=8×π4+4−83=2π+43
We know that the area of the circle is πr2, therefore the area of the circle x2+y2=8 with radius r=√8 is:
π(√8)2=8π
Thus, we have
A2=8π−(2π+43)=6π−43
Hence, the area of parabola and circle is 2π+43 and 6π−43 respectively.