The correct option is
A x=−12+cosθ,y=−√32+sinθThe parametric equation of circle with radius r and center (a,b) is,
x = a + rcosθ, y = b + rsinθ
The general equation on the other side is,
(x−a)2+(y−b)2=r2
Let's find the radius using equation x2+y2+x+√3y=0
We can rewrite equation as, (x+12)2+(y+√32)2=1
Comparing this with general equation, we get,
a=−12,b=−√32,r=1
Hence, the parametric equation of circle is,
x = −12+cosθ, y = −√32+sinθ