The parametric form of the ellipse 4(x+1)2+(y−1)2=4 is
4(x+1)2+(y−1)2=4(x+1)21+(y−1)24=1⇒a=1,b=2
Now the standard parametric form is
x=acosθ,y=bsinθ⇒x+1=cosθ,y−1=2sinθ⇒x=cosθ−1,y=2sinθ+1
So, option C is correct.