The particular solution of differential equation dydx=−4xy2,y(0)=1 is ______
A
y=(2x2+1)=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x2=1y2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=x2+logx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4ex+1y2=8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Dy=(2x2+1)=1 y=(2x2+1)−1 dydx=−4xy2 ∴dyy2=−4xdx ∴∫y−2dy=−4∫xdx+c ∴y−1−1=−4(x22)+c ∴−1y=−2x2+c Take x=0 and y=1 ∴−1=−2(0)+c ∴c=−1 ∴−1y=−2x2−1 ∴1y=1+2x2 ∴y=(1+2x2)−1