The correct options are
B f(x)=xe1+x
D there is exactly one tangent parallel to x−axis to the curve y=f(x)
xdydx=yln(yx) ⋯(1)
⇒dydx=yxln(yx)
Put y=vx
⇒dydx=v+xdvdx∴v+xdvdx=vlnv⇒xdvdx=v(lnv−1)⇒∫dvv(lnv−1)=∫dxx
⇒ln|ln(v)−1|=ln|x|+ln|C|⇒ln(v)−1=Cx⇒lnyx=1+Cx
Now, f(1)=e2⇒C=1
∴ The particular solution is y=xe1+x ⋯(2)
If tangent is parallel to x−axis, then
dydx=0,
⇒e1+x+xe1+x=0⇒x=−1 (∵e1+x≠0)
Putting x=−1 in equation (2),
y=−1
So, only one tangent is parallel to x−axis to the curve y=f(x)