The correct option is B θ0=cos−11√a2+1,v0=√g2b(1+a2)
Given that
y=ax−bx2 ……(1)
The trajectory of projectile is given by
y=xtan θ(1−xR)
Equation (1) can be re written as
y=ax(1−bxa)
⇒y=ax⎛⎜
⎜⎝1−xab⎞⎟
⎟⎠ ……(2)
Comparing equation (1) with equation (2) we get, tanθ=a and Range of projectile, R=ab
Using, 1+tan2θ=1cos2θ , we can write that,
cosθ=1√a2+1
⇒θ0=cos−11√a2+1
and, we know that, R=u2sin2θg
Rewriting the above formula we get,
R=u2(2tanθ1+tan2θ)g
⇒R=ab=v20(2×a1+a2)g
⇒ab=v20g(2a1+a2)⇒v20=g2b(1+a2)
⇒v0=√g2b(1+a2)
Thus, option (b) is the correct answer.