The correct option is
B 300%Let a, b, c be the sides of the original triangle & s be its semi perimeter.
S, a+b+c/2
2s.a+b+c ……………..(1)
The sides of a new triangle are 2a,2b,2c
[Given: side is doubled]
Let's be the new semi perimeter
s′=(2a+2b+2c)/2
s′=2(a+b+c)/2
s′=a+b+c
s′=2S( from equation (1)) …………..(2)
Let Δ= area of original triangle
Δ=√s(s−a)(s−b)(s−c) …………(3)
Δ′=area of new triangle
Δ′=√s′(s′−2a)(s′−2b)(s′−2c)
Δ′=√2s(2s−2a)(2s−2b)(2s−2c)
From equation- (2)
Δ′=√2s.2(s−a)2.(s−b)2(s−c)
Δ′=√16s(s−a)(s−b)(s−c)
Δ′=4√s(s−a)(s−b)(s−c)
Δ′=4Δ
Increase in the area of the triangle =Δ′−Δ
=4Δ−1Δ
=3Δ.
% increase in are = (increase in the area of the triangle/ original area of the triangle)×100
% incomes in area =3Δ/Δ×100
% increase in area =3×100
% increase in area =300%
Hence the percentage increase in the area of a triangle is 300%.
∴ So, the answer is B. 300%.