The correct option is
A 1500%
Let a,b,c be the sides of the original Δ & s be its semi perimeter.
s=12(a+b+c)
2s=a+b+c .......(1)
The sides of a new Δ are 4a,4b,4c [ given: Sides are quadrupled]
Let s′ be the new semi perimeter.
s′=12(4a+4b+4c)=2a+2b+2c
∴s′=4s ......(2) from (1)
Let Δ= area of original triangle
Δ=√s(s−a)(s−b)(s−c) ........(3)
and Δ′=area of triangle
Δ′=√s′(s′−4a)(s′−4b)(s′−4c)
=√4s(4s−4a)(4s−4b)(4s−4c)
=√256s(s−a)(s−b)(s−c)
=16√s(s−a)(s−b)(s−c)
∴Δ′=16Δ from (3)
Increase in the area of the triangle=Δ′−Δ=16Δ–Δ=15Δ
% increase in area=increaseintheareaofthetriangleoriginalareaofthetriangle×100
% increase in area=15ΔΔ×100
% increase in area=15×100=1500%
Hence, the percentage increase in the area of a triangle is 1500%