Given
a+b+c=6(sinA+sinB+sinC3)⇒a+b+c=2(sinA+sinB+sinC) ...(1)
∵asinA=bsinB=csinC⇒a=sinAsinB;c=sinCsinB(∵b=1)
∴ From (1) sinAsinB+1+sinCsinB=2(sinA+sinB+sinC)
⇒(sinA+sinB+sinC)=2(sinA+sinB+sinC)sinB⇒(sinA+sinB+sinC)(2sinB−1)=0
⇒2sinB−1=0 [∵ In △,sinA,sinB,sinC>0,sinA+sinB+sinC≠0]
⇒sinB=12⇒cosB=√32
∴ By cosine formula
cosB=a2+c2−b22ac⇒√32=a2+c2−b22ac⇒√3=a2+c2−b2ac⇒√3ac=a2+c2−b2⇒√3ac−2ac=a2+c2−2ac−b2⇒(√3−2)ac=(a−c)2−b2⇒(a−c)2=b2−(2−√3)ac⇒|a−c|=√b2−(2−√3)ac⇒|2RsinA−2RsinC|=√4R2sin2B−(2−√3)4R2sinAsinC⇒|sinA−sinC|=√sin2B−(2−√3)sinAsinC
⇒∣∣∣2cosA+C2sinA−C2∣∣∣=√14−(2−√3)sinAsinC
⇒2cosA+C2∣∣∣sinA−C2∣∣∣=12√1−(2−√2)sinAsinC
⇒√1−4(2−√3)sinAsinC=4cosA+C2∣∣∣sinA−C2∣∣∣
⇒
⎷1−4(2−√3)sinAsinC|A−C|=4cosA+C2∣∣sinA−C2∣∣|A−C|
⇒limA→C
⎷1−4(2−√3)sinAsinC|A−C|=limA→C4cosA+C2∣∣sinA−C2∣∣|A−C|=2