wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The perimeter of a ΔABC is 6 times the arithmetic mean of the sines of its angle. If the side b is 1, then evaluate limAC14(23)sinAsinC|AC|

Open in App
Solution

Given a+b+c=6(sinA+sinB+sinC3)a+b+c=2(sinA+sinB+sinC) ...(1)
asinA=bsinB=csinCa=sinAsinB;c=sinCsinB(b=1)
From (1) sinAsinB+1+sinCsinB=2(sinA+sinB+sinC)
(sinA+sinB+sinC)=2(sinA+sinB+sinC)sinB(sinA+sinB+sinC)(2sinB1)=0
2sinB1=0 [ In ,sinA,sinB,sinC>0,sinA+sinB+sinC0]
sinB=12cosB=32
By cosine formula
cosB=a2+c2b22ac32=a2+c2b22ac3=a2+c2b2ac3ac=a2+c2b23ac2ac=a2+c22acb2(32)ac=(ac)2b2(ac)2=b2(23)ac|ac|=b2(23)ac|2RsinA2RsinC|=4R2sin2B(23)4R2sinAsinC|sinAsinC|=sin2B(23)sinAsinC
2cosA+C2sinAC2=14(23)sinAsinC
2cosA+C2sinAC2=121(22)sinAsinC
14(23)sinAsinC=4cosA+C2sinAC2
  14(23)sinAsinC|AC|=4cosA+C2sinAC2|AC|
limAC  14(23)sinAsinC|AC|=limAC4cosA+C2sinAC2|AC|=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiation under Integral Sign
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon