The perimeters of the two circular ends of a frustum of a cone are 48 cm and 36 cm. If the height of the frustum is 11 cm, find its volume and curved surface area.
We have,
Perimeter of upper end, C = 48 cm,
Perimeter of lower end, c = 36 cm and
Height, h = 11 cm
Let the radius of upper end be R and the radius of lower end be r.
As, C = 48 cm
⇒2πr=48⇒R=482π⇒R=24π cm
Similarly, c = 36 cm
⇒r=362π⇒r=18πcm
And, l=√(R−r)2+h2=√(24π−18π)2+112=√(6π)2+112=√(6×722)2+112=√(2111)2+112=√441+121×121121=√441+14641121=√1508211 cm
Now,
Volume of the frustum =13πh(R2+r2+Rr)=13×π×11×[(24π)2+(18π)2+(24π)×(18π)]=11π3×[576π2+324π2+432π2]=11π3×1332π2=113×1332π=113×1332×722=1554 cm3
Also,
Curved surface area of the frustum =π(R+r)l=227×(22π+18π)×√1508211=227×42π×√1508211=227×42×722×√1508211≈42×11.164436≈468.91 cm2