Let
f(x)=|sinx|cosx+|cosx|sinx
Now
|sin(x)|=|sin(nπ+x)|. similarly |cosx|=|cos(nπ+x)|
Hence the periodicity will depend on the denominators cosx and sinx.
Now
cos(x)=cos(−x)=cos(2π+x) ...(i)
And
sin(x)=sin(π−x)=sin(2π+x)....(ii)
from i and ii , the common period is 2π.
Thus
f(2π+x)=|sin(2π+x)|cos(2π+x)+|cos(2π+x)|sin(2π+x)
=|sinx|cosx+|cosx|sinx
=f(x)
Hence the period of
h(x)=12(|sinx|cosx+|cosx|sinx) is 2π.