The period of the function f(θ)=4+4sin3θ-3sinθ is:
2π3
π3
π2
π
Explanation for the correct option:
Compute the period of the given function.
f(θ)=4+4sin3θ-3sinθ
=4–(3sinθ–4sin3θ)
=4–sin3θ
fθ+2π3=4–sin3θ+2π3
=4-sin(3θ+2π)=4-sin3θ
Thus, the period of f(θ) is 2π3.
Hence option (A) is the correct answer.