The period of the function f(x)=[sin8xcosx-sin6xcos3x][cos2xcosx-sin3xsin4x]
π
2π
π2
None of these
Explanation for the correct option:
Compute the period of the given function.
f(x)=[sin8xcosx-sin6xcos3x][cos2xcosx-sin3xsin4x]
=[sin9x+sin7x]–[sin9x+sin3x][cos3x+cosx]+[cos7x–cosx]
=[sin7x–sin3x][cos7x+cos3x]
=2cos5xsin2x2cos2xcos5x=tan2x
The general formula for the period of tanax is πa.
Then the period of tan2x is π2 .
Thus, the period of f(x) is π2.
Hence, Option (C) is the correct answer.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2