wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The perpendicular AD on base BC of ABC intersects BC at D, so that BD=3CD.
Prove that 2AB2 =2AC2 +BC2.

Open in App
Solution

In ABC, the perpendicular AD on base BCintersects BC at D, such that BD=3CD.

ABD is a right-angled triangle.On using Pythagoras' Theorem, we get:AB2=AD2+BD2 ...(1)So,ACD is a right-angled triangle.Thus, on using Pythagoras' Theorem, we get:AC2=AD2+CD2 ...(2)By (1)-(2), we get:AB2-AC2=AD2+BD2-AD2-CD2AB2-AC2=BD2-CD2

On multiplying both sides by 2, we get:2AB2-AC2=2BD2-CD22AB2-2AC2=2BD2-CD22AB2=2AC2+2BD2-CD2On using a2-b2=a+ba-b, we get:2AB2=2AC2+2BD+CDBD-CD2AB2=2AC2+2BC3CD-CD [BD+CD=BC and BD=3CD]2AB2=2AC2+2BC×2CD2AB2=2AC2+BC×4CD2AB2=2AC2+BC×3CD+CD2AB2=2AC2 +BC×BD+CD [BD=3CD]2AB2=2AC2+BC×BC [BD+CD=BC]2AB=2AC2+BC2

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythogoras Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon