The perpendicular AD on the base BC ofABCintersects BC in D such that BD=3DC.Prove that 2AB2=2AC2+BC2
Open in App
Solution
AB2=AD2+DB2 Or,AB2=AD2+9CD2 (because DB=3CD) . . . . . (1) InΔADC:AD2=AC2−CD2 Substituting the value of AD in equation (1), we get; AB2=AC2−CD2+9CD2=AC2+8CD2 Or,2AB2=2AC2+16CD2 . . . . . (2) Since BC=CD+3CD=4CD Hence, BC2=16CD2 Substituting the value from above equation in equation (2), we get; 2AB2=2AC2+BC2