The correct option is C 467
From the given equation of the plane
we have a=3, b=−6, c=2, d=−10 and given point (x1,y1,z1)=(2,−3,6)
∴ Perpendicular distance p=
=∣∣
∣∣ax1+by1+xz1−d√12+b2+c2∣∣
∣∣
=∣∣∣3(2)+(−6)(−3)+2(6)−(−10)√9+36+4∣∣∣
=∣∣∣6+18+12+10√9+36+4∣∣∣
∴p=46√49
∴ perpendicular distance =467.