The perpendicular distance from (0,0) to any normal of the curve x=a(cosθ+θsinθ),y=a(sinθ−θcosθ) is
A
|a|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1|a|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
|asinθcosθ|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A|a| x=a(cosθ+θsinθ),y=a(sinθ−θcosθ) x=a(cosθ+θsinθ)⇒dxdθ=a(−sinθ+sinθ+θcosθ)⇒dxdθ=a(cosθ)⋯(1) y=a(sinθ−θcosθ)⇒dydθ=a(cosθ−cosθ+θsinθ)⇒dydθ=a(sinθ)⋯(2) From equation (1) and (2), dydx=sinθcosθ Equation of the normal is y−a(sinθ−θcosθ)x−a(cosθ+θsinθ)=−cosθsinθ⇒xcosθ+ysinθ=acosθ(cosθ+θsinθ)+asinθ(sinθ−θcosθ)∴xcosθ+ysinθ=a Distance from (0,0) is, =∣∣
∣∣0+0−a√cos2θ+sin2θ∣∣
∣∣=|a|