Question

# The perpendicular distance of the point $$P(1, 2, 3)$$ from the line $$\dfrac{x-6}{3}=\dfrac{y-7}{2}=\dfrac{z-7}{-2}$$ is

A
7
B
5
C
0
D
None

Solution

## The correct option is A $$7$$We have,$$\dfrac{x-6}{3}=\dfrac{y-7}{2}=\dfrac{z-7}{-2}$$Let point $$(1,2,3)$$ be $$P$$ and the point through which the line passes be $$Q(6,7,7).$$ Also, the line is parallel to the vector $$\vec{b}=3\hat{i}+2\hat{j}-2\hat{k}$$Now,$$\vec{PQ}=5\hat{i}+5\hat{j}+4\hat{k}$$$$\therefore$$  $$\vec{b}\times \vec{PQ}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\3&2&-2\\5&5&4\end{vmatrix}$$                   $$=\hat{i}(8+10)-\hat{j}(12+10)+\hat{k}(15-10)$$                   $$=18\hat{i}-22\hat{j}+5\hat{k}$$$$\Rightarrow$$  $$\left|\vec{b}\times \vec{PQ}\right|=\sqrt{(18)^2+(-22)^2+(5)^2}$$                       $$=\sqrt{324+484+25}$$                       $$=\sqrt{833}$$$$\Rightarrow$$  $$d=\dfrac{\left|\vec{b}\times \vec{PQ}\right|}{\left|\vec{b}\right|}$$          $$=\dfrac{|\sqrt{833|}}{|\sqrt{(3)^2+(2)^2+(2)^2|}}$$          $$=\dfrac{\sqrt{833}}{\sqrt{17}}$$          $$=\sqrt{49}$$          $$=7$$Mathematics

Suggest Corrections
Â
0

Similar questions
View More

People also searched for
View More