wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The perpendicular from A on sides BC of triangle intersects BC at D. Such that DB=3CD. Prove that 2AB2=2AC2+BC2.
1045097_be188c6696a749ce8553b0c568d6fac1.png

Open in App
Solution

We have,

BC=CD+DB

BC=CD+3CD(DB=3CD)

BC=4CD

CD=BC4(eq1)

DB=3CD=3BC4eq(2)


InΔADC

AC2=CD2+AD2

AC2=(BC4)2+AD2(fromeq1)

(AD)2=AC2BC216

(AD)2=16AC2BC216


InΔADB

AB2=AD2+DB2

AB2=16AC2BC216+(3BC4)2(fromeq2)

AB2=16AC2BC2+9BC216

AB2=16AC2+8BC216

AB2=8(2AC2+BC2)16

2AB2=2AC2+BC2

Proved


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorem of Geometric Mean
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon