The correct option is B (x2+y2)2(a2y2−b2x2)=x2y2(a2+b2)2
Equation of normal to the given hyperbola is given by,
axsecθ+bytanθ=a2+b2..(1)
Slope m=−atanθbsecθ=−asinθb
Thus equation of line through centre and perpendicular to the (1) is, y=−1mx
⇒y=basinθx..(2)
Thus by eliminating θ from (1) and (2) we will get required locus,
⇒cosθ(ax+bybx/ay)=a2+b2
⇒acosθ(x2+y2)=x(a2+b2)
Squaring we get,
⇒a2cos2θ(x2+y2)2=x2(a2+b2)2
⇒a2(1−b2x2a2y2)(x2+y2)2=x2(a2+b2)2
⇒(x2+y2)2(a2y2−b2x2)=x2y2(a2+b2)2