Let the curve be y=f(x).
Then the equation of the tangent at (h,k) will be
y−kx−h=f′(x)h,k
y−k=f′(x)(x−h)
f′(x)h,k(x−h)−(y−k)=0
Distance from origin will be
d=k−f′(x)h,kh√f′(x)2+1
Now d=abscissa=h
Hence
h=k−f′(x)h,kh√f′(x)2+1
h√f′(x)2+1+f′(x)h=k
h[√f′(x)2+1+f′(x)]=k
[√f′(x)2+1+f′(x)]=kh
√f′(x)2+1=kh−f′(x)
Squaring both sides give us
f′(x)2+1=k2h2+f′(x)2−2k.f′(x)h
k2h2−1=2k.f′(x)h
Replacing (h,k) by (x,y) gives us
y2x2−1=2yxdydx
y2x−x2y=dydx
Let y=vx Hence
dydx=v+xdvdx
Hence
v2−12v=v+xdvdx
v2+12v=−xdvdx
v2+12v=−xdvdx
dx−x=2vdvv2+1
−lnx=ln(v2+1)+lnC
lnx+ln(v2+1)+lnC=0
Cx(v2+1)=1
Cx(y2x2+1)=1
Cx(y2+x2x2)=1
Cy2+Cx2=x
It passes through (1,1) hence
2C=1
Or
C=12
Hence the equation turns out to be
x2+y2=2x
Or
(x−1)2+y2=1