Let the point of contact be P(x,y).
Equation of tangent at P(x,y) is given by
Y−y=dydx(X−x)
Now given , length of perpendicular from origin to tangent =x
⇒|−xdydx+y|√1+(dydx)2=x
⇒x2(dydx)2+y2−2xydydx=x2[1+(dydx)2]
⇒y2−2xydydx=x2
⇒dydx=y2−x22xy
Put y=vx
dydx=v+xdvdx
⇒v+xdvdx=v2−12v
⇒xdvdx=−1+v22v
⇒2v1+v2=−dxx
Integrating both sides, we get
log(1+v2)+logx=logk
logx(1+y2x2)=logk
⇒x2+y2=kx
Since, it passes through (1,1)
⇒k=2
So, the equation of curve is
x2+y2−2x=0
On comparing with the given equation,
k=1,m=1,n=−1
⇒k+m−n=3