The correct option is D ax+by+z√(a2+b2)tanα=0
Given:
p1:ax+by=0⋯(i)
p2:z=0⋯(ii)
Plane passing through the line of intersection of p1,p2
p1+kp2=0
ax+by+kz=0⋯(iii)
DC's of normals of the plane (iii)
(a√a2+b2+k2,b√a2+b2+k2,k√a2+b2+k2)
DC's of normals of the plane (i)
(a√a2+b2,b√a2+b2,0)
Since angle between plane (i),(iii) is α
cosα=a⋅a+b⋅b+k⋅0√a2+b2+k2√a2+b2=√a2+b2a2+b2+k2
Squaring both sides,
⇒cos2α=a2+b2a2+b2+k2
⇒(a2+b2)cos2α+k2cos2α=a2+b2
⇒k2cos2α=(a2+b2)(1−cos2α)
⇒k2=(a2+b2)tan2α
⇒k=±√(a2+b2)tanα
put this in equation (iii)
ax+by±z√(a2+b2)tanα=0