The plane ax+by+cz+d=0 divides the line joining (x1,y1,z1) and (x2,y2,z2) in the ratio
Let the plane ax+by+cz+d=0 divides the lines joining (x1,y1,z1) and (x2,y2,z2) in the ratio k:1 as shown in figure.
∴Coordinates of P(kx2+x1k+1,ky2+y1k+1,kz2+z1k+1) must satisfy ax+by+ca+d=0
i.e., (akx2+x1k+1)+b(ky2+y1k+1)+c(kz2+z1k+1)+d=0
⇒a(kx2+x1)+b(ky2+y1)+c(kz2+z1)+c(kz2+z1)+d(k+1)=0
⇒k(ax2+by2+cz2+d)+(ax1+by1+cz1+d)=0
⇒k=−(ax1+by1+cz1+d)(ax2+by2+cz2+d)
Hence, option A is correct.