The plane P;ax+by+cz+d=0 divides the line joining (x1,y1,z1) and (x2,y2,z2) in the ratio of (−ax1+by1+cz1+dax2+by2+cz2+d)=−p1p2; where P1=ax1+by1+cz1+d and P2=ax2+by2+cz2+d. If true enter 1 else 0
Open in App
Solution
Let the plane ax+by+cz+d=0 divides the line joining (x1,y1,z1) and(x2,y2,z2) in the ratio k:1 ∴ coordinates of p(kx2+x1k+1,ky2+y1k+1,kz2+z1k+1) must satisfy ax+by+cz+d=0 i.e.,a(kx2+x1k+1)+b(ky2+y1k+1)+c(kz2+z1k+1)+d=0 ⇒a(kx2+x1)+b(ky2+y1)+c(kz2+z1)+d(k+1)=0 ⇒k(ax2+by2+cz2+d)+(ax1+by1+cz1+d)=0