The correct option is B (3,2,1)
Given: p1:x+y+z=1 and p2:2x+3y−z+4=0
⇒p1+λp2=0
⇒(x+y+z−1)+λ(2x+3y−z+4)=0⋯(i)
⇒(1+2λ)x+(1+3λ)y+(1−λ)z−1+4λ=0
dr's of normal of the plane are 1+2λ,1+3λ,1−λ
Since plane is parallel to y-axis, 1+3λ=0
λ=−13
putting in equation (i)
⇒(x+y+z−1)+−13(2x+3y−z+4)=0
⇒x+4z−7=0
option 2 (3,2,1) satisfies the equation =3+4−7=7−7=0