The point A (2a,4a), B(2a,6a) and C(2a+√3a,5a) (when a>0) are vertices of
Distance AB = √(2a−2a)2+(6a−4a)2=√4a2=2a
Distance AC = √(2a+√3a−2a)2+(5a−4a)2
√3a2+a2=2a
Distance BC= √(2a+√3a−2a)2+(5a−6a)2
AB = BC = CA
Equilateral Triangle
The following points A(2a, 4a), B(2a, 6a) and C(2a+√3a,5a), (a > 0) are the vertices of
Prove that the points (2a,4a), (2a,6a) and (2a+√3a,5a) are vertices of an equilateral triangle.