True
If the area of triangle formed by the points (x1,y1),(x2,y2) and (x3,y3) is zero, then the points are collinear.
∵Area of triangle=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]Here,x1=−6,x2=−4,x3=3 andy1=10,y2=6,y3=−8∵Area of ΔABC=12[−6(6−(−8))+(−4)(−8−10)+3(10−6)]=12[−6(14)+(−4)(−18)+3(4)]=12[−84+72+12]=0So, given points are collinear.Now, distance between A(-6,10) and B(-4,6).AB=√(−4+6)2+(6−10)2=√22+42=√4+16=√20=2√5
⎡⎢
⎢⎣∵Distance (d) between the points(x1,y1) and (x2,y2),d=√(x2−x1)2+(y2−y1)2⎤⎥
⎥⎦
Distance between A(-6,10) and C(3,-8), AC=√(3+6)2+(−8−10)2=√92+182=√81+324=√405=√81×5=9√5∴AB=29ACwhich is the required relation.