The point A(sin θ, cosθ) is 3 units away from the point B (2cos75∘,2sin75∘). If 0∘≤Θ<360∘, then Θ is _____ degree
Point A (sin θ, cosθ)
Point B (2cos75∘,2sin75∘)
Distance between these two points.
3=√(2cos75o−sinθ)2+(2sin75o−cosθ)2
Squaring on both sides
9=4cos275∘+sin2θ−4sinθcos75∘+4sin275∘+cos2θ−4sin75∘.cosθ
9=4(sin275∘+cos275∘)+(sin2θ+cos2θ)−4(sinθcos75∘+cosθsin75∘)
Using identity sin2θ+cos2θ=1
Sin |A + B| = sin A cos B + cos A sin B
9=4+1−4sin(θ+75∘)
4=−4sin(θ+75∘)
sin(θ+75∘)=−1
sin(θ+75∘)=sin270∘
for sin x = -1
x can be -450°, -90°, 270°, 630° - - - - - -
We can take x = 270° only for sin x = -1. If we take same other values for x,θ won't lies in the interval of [0, 360°)
So, θ+75∘=270∘
θ=195∘