wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The point A(sin θ, cosθ) is 3 units away from the point B (2cos75,2sin75). If 0Θ<360, then Θ is _____ degree

Open in App
Solution

Point A (sin θ, cosθ)
Point B (2cos75,2sin75)
Distance between these two points.
3=(2cos75osinθ)2+(2sin75ocosθ)2
Squaring on both sides

9=4cos275+sin2θ4sinθcos75+4sin275+cos2θ4sin75.cosθ
9=4(sin275+cos275)+(sin2θ+cos2θ)4(sinθcos75+cosθsin75)

Using identity sin2θ+cos2θ=1
Sin |A + B| = sin A cos B + cos A sin B
9=4+14sin(θ+75)
4=4sin(θ+75)
sin(θ+75)=1
sin(θ+75)=sin270
for sin x = -1
x can be -450°, -90°, 270°, 630° - - - - - -

We can take x = 270° only for sin x = -1. If we take same other values for x,θ won't lies in the interval of [0, 360°)
So, θ+75=270
θ=195


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon