The point A(sin θ, cosθ) is 3 units away from the point B (2 cos 75∘, 2 sin 75∘). If 0∘ ≤θ< 360∘, then θ is
Point A (sin θ, cosθ)
Point B (2 cos 75∘, 2 sin 75∘)
Distance between these two points.
3=√(2cos75∘−sinθ)2+(2sin75∘−cosθ)2
Squaring on both sides
9 = 4 cos275∘ + sin2θ - 4 sinθcos 75∘ + 4 sin275∘+ cos2θ - 4 sin 75∘ . cosθ
9 = 4(sin275∘ + cos275∘) + (sin2θ + cos2θ)- 4 (sin θcos 75∘ + cosθ sin 75∘)
Using identity sin2θ + cos2θ = 1
Sin (A + B) = sin A cos B + cos A sin B
9 = 4 + 1 - 4 sin (θ + 75∘)
4 = -4 sin (θ + 75∘)
sin (θ + 75∘) = -1
sin(θ + 75∘) = sin270∘
for sin x = -1
x can be −450∘, −90∘, 270∘, 630∘ - - - - - -
We can take x = 270∘ only for sin x = -1. If we take same other values for x,θ won't lie in the interval of [0, 360∘)
So, θ + 75∘ = 270∘
θ = 195∘