wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The point A(sin θ, cosθ) is 3 units away from the point B (2 cos 75, 2 sin 75). If 0 θ< 360, then θ is __ degree

Open in App
Solution

Point A (sin θ, cosθ)

Point B (2 cos 75, 2 sin 75)

Distance between these two points.

3=(2cos75sinθ)2+(2sin75cosθ)2

Squaring on both sides

9 = 4 cos275 + sin2θ - 4 sinθcos 75 + 4 sin275+ cos2θ - 4 sin 75 . cosθ

9 = 4(sin275 + cos275) + (sin2θ + cos2θ)- 4 (sin θcos 75 + cosθ sin 75)

Using identity sin2θ + cos2θ = 1

Sin (A + B) = sin A cos B + cos A sin B

9 = 4 + 1 - 4 sin (θ + 75)

4 = -4 sin (θ + 75)

sin (θ + 75) = -1

sin(θ + 75) = sin270

for sin x = -1

x can be 450, 90, 270, 630 - - - - - -

We can take x = 270 only for sin x = -1. If we take same other values for x,θ won't lie in the interval of [0, 360)

So, θ + 75 = 270

θ = 195


flag
Suggest Corrections
thumbs-up
24
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon