The correct option is A (−3,−384)
Given: y=37x2+222x−51
Since coefficient of x2 is 37>0, we get upward facing parabola and its minimum value lies at vertex.
Here, y=37x2+222x−51
Differentiating both sides w.r.t. x, we get
dydx=37(2)x+222
dydx=74x+222
For critical point or x-coordinate of vertex, we get dydx=0
⇒74x+222=0
⇒x=−3
& ymin=37(−3)2+222(−3)−51
⇒ymin=333−666−51=−384
Hence ymin=−384
Thus, coordinates of the vertex of the quadratic expression is:
(−3,−384)