The correct option is C (13, 0) and (0, 1/3)
Theequationofthelinepassingthrough(x1,y1)and(x2,y2)isy−y1=(x−x1x2−x1)(y2−y1).Here(x1,y1)=(4,1)&(x2,y2)=(5,−2)Sotheequationofthelinepassingthrough(x1,y1)and(x2,y2)isy−1=x−45−4(−2−1)⟹3x+y=13..........(i)Thisline(i)intersectstheX−axisat(x,0).Wecangetxbyputtingy=0inequation(i)∴3x+0=13⟹x=133units.Againtheline(i)intersectstheY−axisat(0,y).Wecangetybyputtingx=0inequation(i)∴3×0+y=13⟹y=13units.SincetheΔhastheaxesasitstwosides∴itisarighttriangle.Itsarea=12×base×heightItsbase=x=133units,height=y13.unitsAreaoftheΔ=12×133×13squnits=1696squnits.Ans − Option C