The correct option is
A (1,1,2)Given two lines →r=(−^i+2^j+3^k)+t(−2^i+^j+^k) and →r=(2^i+3^j+5^k)+t(^i+2^j+3^k)
⇒→r=(−1−2t)^i+(2+t)^j+(3+t)^k
⇒→r=(2+s)^i+(3+2s)^j+(5+3s)^k
Equating the coefficients of the above vector equations, we get
−1−2t=2+s or s+2t=−3 .........(1)
2+t=3+2s or 2s−t=−1 .........(2)
3+t=5+3s or 3s−t=−2 .........(3)
Eqn.(2)-Eqn.(3)=2s−t−3s+t=−1+2
⇒−s=1 or s=−1
Substituting the value of s=−1 in (1) we get
s+2t=−3⇒2t=−3−s=−3−(−1)=−3+1=−2
⇒t=−1
∴→r=(−1−2t)^i+(2+t)^j+(3+t)^k becomes
→r=(−1−2×−1)^i+(2−1)^j+(3−1)^k=^i+^j+2^k
Thus, the point intersects at (1,1,2)