The correct option is
C (3,−1)For any general circle x2+y2+2gx+2fy+c=0, the chord of contact of tagents from (x1,y1) is given as x1x+y1y+g(x1+x)+f(y1+y)+c=0
Hence, comparing x2+y2+2gx+2fy+c=0 with 2x2+2y2−3x+5y−7=0⟹x2+y2−32x+52y−72=0 gives g=−34, f=54 and c=−72
∴x1x+y1y+g(x1+x)+f(y1+y)+c=x1x+y1y−34(x1+x)+54(y1+y)−72=0
∴4x1x+4y1y−3(x1+x)+5(y1+y)−14=0
∴4x1x+4y1y−3(x1+x)+5(y1+y)−14=9x+y−28
on comparing coefficients of x, we have
4x1−3=9⟹x1=3
on comparing coefficients of y, we have
4y1+5=1⟹y1=−1
Hence, required point is (3,−1).