The correct option is
B (2,0)Let the point of x-axis be P(x,0)≡(x1,y1)
Given: A(5,4)≡(x2,y2) and B(−2,3) are equidistant from P
That is PA=PB
Hence PA2=PB2 ................. (1)
Distance between two points is √(x2−x1)2+(y2−y1)2
PA=√(5−x)2+(4−0)2=√x2+25−10x+16=√x2−10x+41
Therefore, PA2=x2−10x+41
Here P(x,0)≡(x1,y1) B(−2,3)≡(x2,y2)
Similarly, PB=√(−2−x)2+(3−0)2=√x2+4+4x+9=√x2+4x+13
Equation (1) becomes
x2−10x+41=x2+4x+13
−10x−4x=13−41
−14x=−28
x=2
Hence the point on x-axis is (2,0).