The point ([P + 1], [P]) lies in the region bounded by curves x2+y2−2x−15=0 and x2+y2−2x−7=0, {[∙] denotes greatest integer function} then
4<[p]2<8
([P+1],[P]) lies inside the circle x2+y2−2x−15=0
∴[P+1]2+[P]2−2[P+1]−15<0
⇒[P]2<8 …(1)
([P+1],[P]) lies outside the circle x2+y2−2x−7=0
∴[P+1]2+[P]2−2[P+1]−7>0
⇒[P]2>4 …(2)
∴ (1) & (2)
⇒4<[P]2<8