Dear Student,
Please find below the solution to the asked query:
Given,y=2x
Given a point p(1,1)
let line L=y=mx+c
y=2x+c(1,1) lies on this line
1=2+c
c=−1
hence,y=2x−1
let new point be (h,k)
it will lie on L
k=2h−1
√(h−1)^2+(k−1)^2=1
(h−1)^2+(k−1)^2=1
(h−1)^2+(2h−2)^2=1
h^2+1−2h+4h^2+4−8h=15
h^2−10h+4=0
h=(10±√[100−4×4×5]) ÷ (2×5)
=[10±√20] ÷ 10
=1±[2√5 ÷ 10]
=1±[1÷√5]
k=2h−1
=2± [[2÷√5】−1]
=1± [2÷√5]
hence (h,k)= (1±[1÷√5] ,1±[2÷√5])
correct ans is 2
Like if satisfied