The correct option is C 6√3
P(−2√6,√3) lies on the hyperbola x2a2−y2b2=1
⇒24a2−3b2=1 ⋯(i)
Now, b2a2=e2−1=14 [∵e=√52]
⇒4b2=a2 ⋯(ii)
From (i) and (ii), we get
a2=12 and b2=3
Hyperbola: x212−y23=1
Tangent at P(−2√6,√3),
−x√6−y√3=1⇒Q(0,−√3)
Slope of tangent =−1√2
Normal at P(−2√6,√3),
y−√3=√2(x+2√6)
⇒R(0,5√3)
∴QR=6√3
Alternate Solution:
Let P(asecθ, btanθ)
T:xasecθ−ybtanθ=1 ⇒ Q(0, −btanθ)
N:axsecθ+bytanθ=a2+b2⇒R(0,a2+b2btanθ)
QR=∣∣∣(a2+b2b)tanθ+btanθ∣∣∣
∵b2a2=e2−1=14⇒4b2=a2
⇒a2=12 and b2=3
secθ=−√2 and tanθ=1
Now, QR=∣∣
∣∣(12+3√3)1+√31∣∣
∣∣=6√3