The point P is the intersection of the straight line joining the points Q(2,3,5) and R(1,−1,4) with the plane 5x−4y−z=1. If S is the foot of the perpendicular drawn from the point T(2,1,4) to QR, then the length of the line segment PS is
Equation of straight line QR is
x−21−2=y−3−1−3=z−54−5⇒x−2−1=y−3−4=z−5−1
⇒x−2−1=y−34=z−51=λ⇒x−21=y−34=z−51=λ ...(i)
∴P(λ+2,4λ+3,λ+5) must lie on 5x−4y−z=1 ⇒5(λ+2)−4(4λ+3)−(λ+5)=1
⇒5λ+10−16λ−12−λ−5=1
⇒−7−12λ=1
∴λ=−23
or P(43,13,133) ...(ii)
Again, we can assumeS from Eq. (i) as S(μ+2,4μ+3,μ+5)
∴ dr's of TS =(μ+2−2,4μ+3−1,μ+5−4) =(μ,4μ+2,μ+1)
and dr's of QR =(1,4,1)
∴1(μ)+4(4μ+2)+1(μ+1)=0
⇒μ=−12 and S(32,1,92) ...(iii)
∴ Length of PS =√(32−43)2+(1−13)2+(92−133)2=1√2