The correct options are
A (3√2,√2)
D (−3√2,−√2)
Given, equation of ellipse
x29+y24=1∴e=√1−49⇒e=√53
Coordinates of foci F1 and F2 are
(±√5,0)
Let P≡(h,k)
Now, the area of
△PF1F2=√10⇒12×2√5×|k|=√10⇒|k|=√2⇒k=√2 or −√2⇒y=√2 or −√2
Putting value of y in equation of ellipse
⇒4x2+9(√2)2=36⇒x2=92⇒x=3√2,−3√2
Hence, possible points are
(3√2,√2), (3√2,−√2), (−3√2,√2), (−3√2,−√2)