The correct option is D (√35,√35)
Let the required point be (x1,y1)
Now, 3y=6x−5x3
⇒3dydx=6−15x2
⇒dydx=2−5x2
⇒(dydx)(x1,y1)=2−5x21
The equation of the normal at (x1,y1) is y−y1=−12−5x21(x−x1)
If it passes through the origin, then
0−y1=−12−5x21(0−x1)
⇒y1=−x12−5x21 ⋯(i)
Since (x1,y1) lies on the given curve.
⇒3y1=6x1−5x31 ⋯(ii)
From equations (i) and (ii), we obtain
35x21−2=−5x21+6
Let a=x21
3=−25a2+30a+10a−12
5a2−8a+3=0
⇒a=1,35
∴x1=±1 or ±√35
⇒x1=1 and y1=13
⇒x1=−1 and y1=−13
⇒x1=√35 and y1=13(6√3√5−3√3√5)=√35
⇒x1=−√35 and y1=13(−6√3√5+3√3√5)=−√35
Hence, the required points are (1,13),(−1,−13),(√35,√35),(−√35,−√35)