The correct option is B (2,2±2√3)
y2−2x3−4y+8=0
Let a tangent is drawn to the curve at point Q(α,β) on the curve which passes through P(1,2).
Differentiating w.r.t. x, we get
2ydydx−6x2−4dydx=0
⇒dydx=3x2y−2
Now, slope of line PQ=(dydx)(α,β)
⇒β−2α−1=3α2β−2
⇒(β−2)2=3α2(α−1)⋯(i)
Also (α,β) satisfies the equation of the curve.
⇒β2−2α3−4β+8=0 or (β−2)2=2α3−4⋯(ii)
From equations (i) and (ii), 3α2(α−1)=2α3−4
⇒α3−3α2+4=0
⇒(α−2)(α2−α−2)=0
⇒(α−2)2(α+1)=0
When α=2,(β−2)2=12⇒β=2±2√3
When α=−1,(β−2)2=−6 (not possible)
⇒(α,β)≡(2,2±2√3)