The correct option is
D (±4√3,2)The given equation is,
y3+3x2=12y ------- ( 1 )
Differentiate above equation,
3y2dydx+6x=12dydx
⇒ (3y2−12)dydx=−6x
⇒ dydx=−6x3y2−12 ---------- ( 2 )
Let (x1,y1) be the point on the curve where the tangent is vertical to it.
Now substituting the points (x1,y1) in equation ( 2 ),
dydx=−6x13y21−12
Also given that the tangent at this point is verical to it.
That is the slope of the tangent is infinity at this point.
⇒ 3y21−12=0
⇒ 3y21=12
⇒ y21=4
⇒ y1=±2
Substituting the value of y1 in equation ( 1 ), we have,
y31+3x21=12y1
⇒ (2)3+3x21=12y1
⇒ 8+3x21=12(2)
⇒ 3x21=24−8
⇒ 3x21=16
⇒ x21=163
∴ x1=±4√3
As the square root of a negative number is imaginary, we can neglect the value y1=−2
∴ The required point on the curve is (±4√3,2)