The correct option is C (1,3,4)
Given: A(−1,1,3),B(2,1,2),C(0,5,6) and D(3,2,2)
Let (x,y,z) be the points equidistant from the given points by the distance d.
Then, we have the equations
Using Distance formula,
(x+1)2+(y−1)2+(z−3)2=d2⋯(i)
(x−2)2+(y−1)2+(z−2)2=d2⋯(ii)
(x−0)2+(y−5)2+(z−6)2=d2⋯(iii)
(x−3)2+(y−2)2+(z−2)2=d2⋯(iv)
Using equation (i),(ii) we get,
z=3x+1
Using equation (ii),(iv) we get,
y=4−x
Putting the values in equation(i),(iii)
⇒x2+2x+1+9−6x+x2+9x2−12x+4=x2+x2+2x+1+9x2−30x+25
⇒x=1
Hence, the point is given by (x,4−x,3x+1)=(1,3,4)