The correct option is
A on a sphere
(a)Consider the points
A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,4)
∣∣
∣
∣∣x−x1y−y1z−z1x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1∣∣
∣
∣∣=0
∣∣
∣∣x−0y−0z−00−02−00−01−00−00−0∣∣
∣∣=0
∣∣
∣∣xyz020100∣∣
∣∣=0
⇒x(0−0)−y(0−0)+z(0−2)=0
⇒−2z=0
Substituting the last point (0,0,4) we get
−2z=−2×4≠0
Hence the given points are not co-planar.
(d)The general equation of a sphere is x2+y2+2ux+2vy+2wz+d=0 ......(1)
It passes through A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,4)
Substituting A(0,0,0) in (1) we get 0+0+0+0+0+0+d=0 or d=0
Substituting B(0,2,0) in (1) we get
0+4+0+0+4v+0+d=0 or 4v+d=−4
⇒4v=−4 since d=0
∴v=−1
Substituting C(1,0,0) in (1) we get 1+0+0+2u+0+0+d=0
or 2u+d=−1
⇒2u=−1 since d=0
∴u=−12
Substituting D(0,0,4) in (1) we get 0+0+16+0+0+8w+d=0 or 8w+d=−16
⇒8w=−16 since d=0
∴w=−168=−2
Hence u=−2,v=−12,w=−2
Centre of the sphere is (−2,−12,−2)
Radius=√(−2)2+(−12)2+(−2)2=√4+14+4=√8+14=√32+14=√334>0
Hence the given points form a sphere.