The correct options are
B 2
C 17
Let the equation of the circle passing through (2,3),(0,2) and (4,5) be
x2+y2+2gx+2fy+c=0(1)
Substituting the coordinates in (1), we get
4+9+4g+6f+c=0⇒48+6f+c=13,(2) 0+4+0g+4f+c=0⇒4f+c=−4(3)
and 16+25+8g+10f+c=0 ⇒8g+10f+c=−41(4)
Solving (2),(3)and (4), we get g=52,f=−192 and c=34, so that equation (i) becomes
x2+y2+5x−19y+34=0(5)
Therefore, the point (0,t) will lie on the circle (5) if t2−19t+34=0, i.e..t=2 or 17