The points A(0,0),B(cosα,sinα), and C(cosβ,sinβ) are the vertices of a right-angled triangle if
A
sin2α−β2=12√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cosα−β2=−1√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cos2α−β2=12√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sinα−β2=−1√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Asin2α−β2=12√2 ByusingPythagoroustheoremThen,AC2+AB2=BC2⇒√(cos2β+sin2β)+(cos2α+sin2α)=(cosβ−cosα)2+(sinβ−sinα)2⇒√1+1=(cos2β+sin2β+sin2α+cos2α−2cosβ.cosα−2sinαsinβ)⇒√2=[2−2{sinα.sinβ+cosβ.cosα}]⇒√2=2−2cos(α−β)⇒√22=1−cos(α−β)⇒1√2=2sin2(α−β)2√12√2=sin(α−β)2