The points A(2a,4a), B(2a,6a) and C(2a+√3a,5a) (when a>0) are vertices of :
Given points are
A(x1,y1)=(2a,4a)
B(x2,y2)=(2a,6a)
and C(x3,y3)=(2a+√3a,5a)
Distance of
AB=√(x1−x2)2+(y1−y2)2
=√(2a−2a)2+(4a−6a)2
=√(2a)2
AB=2a
Distance of
BC=√(x2−x3)2+(y2−y3)2
=√(2a−2a−√3a)2+(6a−5a)2
=√(√3a)2+a2
BC=2a
Distance of
CA=√(x3−x1)2+(y3−y1)2
=√(2a+√3a−2a)2+(5a−4a)2
=√(√3a)2+a2
CA=2a
Then AB=BC=CA=2a
Hence, it is an equilateral triangle.