Given,
∆ABC is a rt. angled ∆, rt. angled at point
B.
Coordinates of point A = (4 , 7)
Coordinates of point B = (p , 3)
Coordinates of point C = (7 , 3)
Using distance formula, we get
➡ AB = √(p – 4)² + (3 – 7)²
➡ AB = √(p² + 16 – 8p + 16)
➡ AB = √(p² – 8p + 32) units
Now,
➡ BC = √(p – 7)² + (3 – 3)²
➡ BC = √(p² + 49 – 14p) units
And,
➡ AC = √(4 – 7)² + (7 – 3)²
➡ AC = √9 + 16
➡ AC = √25
➡ AC = 5 units.
Now,
Using Pythagoras theorem, we get
➡ AC² = AB² + BC²
➡ 5² = p² – 8p + 32 + p² + 49 – 14p
➡ 25 = 2p² – 22p + 81
➡ 2p² – 22p + 56 = 0
➡ p² – 11p + 28 = 0
Now, using quadratic formula, we get
➡ p = 11 ± √(121 – 112)/2
➡ p = 11 ± √(9)/2
➡ p = 11 ± 3/2
Here,
➡ p = 11 + 3/2
➡ p = 14/2
➡ p = 7
OR
➡ p = 11 – 3/2
➡ p = 8/2
➡ p = 4
So, we get p = 7 or 4.